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ORIGINAL RESEARCH

Marker Imputation in Barley Association Studies

Jean-Luc Jannink,* Hiroyoshi Iwata, Prasanna R. Bhat, 
Shiaoman Chao, Peter Wenzl, and Gary J. Muehlbauer

Abstract
Association mapping requires high marker density, potentially 
leading to many missing marker data and to high genotyping 
costs. In human genetics, methods exist to impute missing marker 
data and whole markers typed in a reference panel but not in the 
experimental dataset. We sought to determine if an imputation 
method developed for human data would function effectively in 
a barley (Hordeum vulgare L.) panel. The panel contained 98 
lines, 2517 single nucleotide polymorphism (SNP) markers, and 
716 Diversity Arrays Technology (DArT) markers. Averaged over 
markers, masked scores were correctly imputed 97.1% of the 
time. We chose 610 and 273 tag markers in two- and six-row 
barley subpopulations, respectively. Despite this low number of 
tags, imputation accuracy was such that for about 80% of non-
tag markers, the prediction r2 between imputed and true scores 
was 0.8 or higher. When DArT markers were used as tags, SNP 
markers were imputed with similar accuracy, suggesting that the 
method can convert association information from one marker 
system (e.g., DArT) to another marker system (e.g., SNP). We 
believe marker imputation methods will have an important future 
in association studies as a component of tagging methods and in 
reducing problems due to missing data.

THE OBJECTIVE OF GENETIC mapping is to identify sim-
ply inherited markers in close proximity to genetic 

factors aff ecting quantitative traits (quantitative trait loci, 
or QTL). Th is localization relies on processes that create 
a statistical association (called linkage or gametic phase 
disequilibrium and henceforth abbreviated LD) between 
marker and QTL alleles and on recombination that selec-
tively reduces that association as a function of the marker 
distance from the QTL. In traditional QTL mapping, 
usually called linkage mapping, the creation and selective 
removal of LD both occur within the boundaries of the 
experiment. Linkage disequilibrium is created by hybrid-
ization between inbred lines and decays through recom-
bination during the production of recombinant progeny. 
In association mapping, both processes occur outside the 
boundaries of the experiment and are therefore not under 
experimental control. Th e primary mechanisms generat-
ing LD are mutation and drift , while recombination con-
tinues to be the sole systematic mechanism reducing LD.

Th e relatively few generations of recombination that 
are used in standard linkage mapping allow little opportu-
nity for dissipation of LD. Consequently, high LD prevails 
even between distant loci (e.g., 10 cM, which would be very 
roughly 50 × 106 base pairs for the Triticeae), and linkage 
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mapping is inadequate to the task of fi ne mapping QTL. In 
contrast, in association mapping, many cycles of recom-
bination may occur prior to the experiment such that LD 
may decay over a quite short span. For the detection of 
QTL to succeed, marker density must be matched to the 
rate of decay of LD. Th e key LD parameter to consider here 
is the r2 between loci because the fraction of the pheno-
typic variance that a marker will explain is directly related 
to its r2 with the QTL. In linkage mapping with biparental 
crosses, the relationship between r2 and genetic distance 
is straightforward, in part because allele frequencies are 
always close to 0.5. For mapping within F

2
 or doubled-

haploid populations, r2 ≈ 1 – 4c, where c is the recombina-
tion frequency. Th is approximation holds reasonably well 
for c < 0.1. In association mapping, LD is not nearly as well 
behaved. In an equilibrium population at eff ective popula-
tion size N

e
, the expectation of r2 is E(r2) = 1 / (4N

e
c + 1) 

(Hill and Robertson, 1968). Th ere will be quite a bit of 
variability around this expectation caused by the fact that 
allele frequencies at loci will diff er from each other and 
because drift , by defi nition, creates LD in random ways. 
Given these caveats, assuming an eff ective population size 
for cultivated barley (Hordeum vulgare L.) of 100 would 
mean that average LD would decay to quite low levels 
(r2 = 0.20) within 1 cM. Th e actual extent of LD, however, 
will need to be measured in each study population. In 
particular, the meaning of “eff ective population size” is 
unclear for a species in which the “population” consists of 
a mosaic of breeding programs. Nevertheless, as a rough 
guide, this calculation shows that population-wide LD 
can decay much more rapidly than the family-based LD 
of standard QTL mapping populations. Required marker 
density will therefore also be higher.

To develop computational strategies to alleviate 
marker density needs in plants, it is useful to look to 
human genetics where marker densities are much greater 
and tremendous resources have been invested. Given 
that human is an outbred diploid, a fi rst issue is to iden-
tify marker phase (that is, for a series of heterozygous 
markers, to identify which alleles have the same paren-
tal origin). Methods to infer the phase of markers have 
also been used to impute missing marker data (Scheet 
and Stephens, 2006). Th e process of imputing has been 
extended to impute the allelic state of markers that 
were not typed in the experimental dataset (Servin and 
Stephens, 2007; Marchini et al., 2007). Th is imputation 
requires a reference panel that has been densely typed to 
provide a sample of haplotypes that include markers not 
typed in the experimental dataset (Fig. 1). Th e imputa-
tion algorithm implemented in the soft ware fastPHASE 
(version 1.3) applies a statistical model to the data that 
clusters haplotypes identifi ed over short stretches of 
the genome (Scheet and Stephens, 2006). When marker 
data is missing, haplotypes are assigned to clusters using 
available data, and missing scores are imputed to the 
allele most frequent for that cluster (Scheet and Stephens, 
2006). Missing marker scores may occur in random cells 
of the genotype × marker matrix, as when a particular 
genotype/marker combination fails, or it may be sys-
tematic, as when all experimental data is not typed for 
a particular marker such that it is only available in the 
reference panel.

Superfi cially, the marker imputation described seems 
to have little to do with the process of tag single nucle-
otide polymorphism (SNP) selection, where certain SNP 
are chosen as proxies for others with which the proxies 

Figure 1. A. Left: Sequence of the real process through which imputation methods would be used in association studies, from the selection 
of a reference panel through the use of imputed marker scores in association studies. Right: Parallel view of the simulation process used 
to verify that this approach might be fruitful. The conceptual experimental population in which imputation would be performed is in beige 
with the reference panel selected from it in red. Key common steps between real and simulation processes are highlighted in blue. Simula-
tion steps that allow verifi cation of imputation accuracy are in green. Steps in the real process that would benefi t from further research are 
in red. B. Illustration of a small portion of the structure of reference and experimental panels for the imputation of markers that have not 
been scored on experimental lines. Markers (S01 to S17) are in columns and barley lines in rows. Markers in gray have not been scored in 
the experimental panel (denoted by line names “Exp_##”) and will be imputed on the basis of information in the reference panel (denoted 
by line names “Ref_##”) and on tag marker (S01, 03, 05, 09, 12, and 15) data in the experimental panel.
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are in high LD (Stram, 2004; de Bakker et al., 2005). But 
in fact, tag SNPs are also used to impute the allelic state 
of non-tag markers. Th is method of imputation is sim-
pler than that of the clustering algorithm of fastPHASE. 
Specifi cally, the allele of a non-tag SNP is simply taken to 
be in agreement with that of its tag SNP proxy. Multiple 
tag SNP combinations are also possible (de Bakker et al., 
2005) and they also generate imputations by simple one-
to-one correspondences between a tag SNP combination 
and a non-tag SNP allelic state. Ultimately the outcome 
is the same for both tag SNP and clustering approaches: 
some markers are typed while others are not. Non-
typed markers are imputed, and the association analysis 
regresses the phenotype on the allelic states of all mark-
ers, typed or imputed.

High density DNA marker data are becoming 
available in plants and a few genome-wide association 
mapping studies have been published (eg., Kraakman 
et al., 2004, 2006; Crossa et al., 2007; Steff enson et al., 
2007). Th us, methodologies for imputing markers will 
be increasingly needed. To our knowledge, the cluster-
ing methodology of fastPHASE has not been applied to 
impute markers in a crop before. Given the non-natural 
population structure characteristic of crops (Hamblin et 
al. 2005; Hamblin et al., 2006; Rostoks et al., 2006), we 
wanted fi rst to evaluate the eff ectiveness of fastPHASE at 
imputing missing marker scores when these scores were 
randomly missing from a dataset. We also compared, by 
simulation, imputation accuracy obtained from designed 
tag SNP proxy tests to that of fastPHASE when certain 
non-tag markers were systematically missing from the 
experimental dataset (Fig. 1A). Given the possibility of 
using fastPHASE to replace tag SNP tests, we evaluated 
two methods of choosing tag SNP (de Bakker et al., 2005) 
for their ability to allow fastPHASE to impute accu-
rately. Finally, since most current SNP sets in crops will 
not have been explicitly chosen as tag SNP, we looked 
at two methods of supplementing a random set of SNP 
markers with few additional markers so as to maximize 
fastPHASE imputation accuracy. To tie these evaluations 
to the complexity of crop LD patterns, all analyses were 
based on marker data generated on barley by the Barley 
Coordinated Agricultural Project (www.barleycap.org).

Materials and Methods
Germplasm and Marker Data
Th e data analyzed in this study were derived from 
marker polymorphisms on the barley CAP core. Th e 
CAP core consists of a set of 102 lines containing primar-
ily North American lines (there are 11 lines of non-North 
American origin). Barley can be grouped according to 
row type (2- or 6-row), growth habit (spring or winter), 
and usage (forage, feed, or malt). Grouped in this way, 
the CAP core contains 30 2-row and 27 6-row spring 
malt types; one 2-row and two 6-row winter malt types; 
11 2-row and three 6-row spring feed types; 11 6-row 

winter feed types, four forage types, and 13 genetic 
stocks. Th ese CAP core lines have been screened with 
SNP obtained from three Illumina GoldenGate oligo-
nucleotide pool assays (OPA). One assay was described in 
Rostoks et al. (2006), denoted pilot OPA1 (POPA1), and 
the two others were developed with similar methods (T.J. 
Close, personal communication, 2008), denoted POPA2 
and POPA3. Ninety-fi ve of the lines were also screened 
with barley Diversity Arrays Technology (DArT) markers 
(Wenzl et al., 2004). In preliminary analyses using these 
markers, four lines (‘Oregon Wolfe Barley-Dominant,’ 
‘Oregon Wolfe Barley-Recessive,’ ‘Steptoe,’ and ‘Barke’) 
did not cluster well with the others and were excluded 
from further analysis. Of the remaining 98 lines (Table 
1), ‘Haruna Nijo,’ ‘BCD12,’ and ‘Morex’ were not scored 
with the DArT markers. Aft er removing markers for 
which more than half the lines had missing scores, there 
were 1399, 1253, 1216, and 1476 POPA1, POPA2, POPA3, 
and DArT markers, respectively. Of these, respectively 
1030, 930, 769, and 1100 had map positions from con-
sensus bi-parental mapping projects (T.J. Close personal 
communication, 2008; Wenzl et al. 2006, P. Szucs and P. 
Hayes, personal communication, 2008). Sequence and 
marker information were used to remove redundant 
DArT from the dataset. Clones from 1265 DArT mark-
ers were sequenced. All markers whose clones clustered 
on the basis of their sequence were considered redun-
dant. In two cases, DArT were joined to a cluster by 
their sequence but their marker scores diff ered from the 
cluster consensus for more than fi ve lines. Th ose DArT 
were considered non-redundant. For unsequenced DArT 
markers, if their scores across the barley core matched 
exactly, they were also considered redundant. For all 
redundancy groups, the single marker with the fewest 
missing scores was retained. Th is process left  3131 mark-
ers with map positions. Th e POPA map containing posi-
tions of 2943 EST-derived SNP was used as the reference 
map (T.J. Close, personal communication, 2008; and 
Harvest:Barley, http://harvest.ucr.edu and http://www.
harvest-web.org). To merge DArT markers onto this map, 
the DArT consensus map (Wenzl et al., 2006) and the 
2383-locus Oregon Wolfe Barley (OWB) map (P. Szucs 
and P. Hayes, personal communication, 2008; http://
www.barleycap.org), containing both POPA and DArT 
markers, were used. Th e following expedient approach 
was used to merge these maps. For each chromosome, 
common markers between the OWB and DArT maps 
were identifi ed. Per chromosome, there were on average 
69 (range: 32–94) common markers. For common mark-
ers, OWB positions were regressed on DArT positions. 
For remaining markers, that regression was used to 
project DArT positions onto the OWB map (OWB map 
positions remained unchanged in this merge). Th e same 
procedure was used to project OWB and DArT positions 
onto the reference POPA map. Finally, for 102 unmapped 
POPA SNP whose scores matched perfectly with those of 
a mapped marker, the unmapped marker was also placed 
at its matching marker’s position. Th e rate of missing 
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marker data was 1.8% overall (3.2% for the DArT mark-
ers and 0.5% for the SNP markers).

Marker Imputation
Missing marker data were imputed using the program 
fastPHASE version 1.3 (Scheet and Stephens, 2006). 
Briefl y, the fastPHASE algorithm works as follows: Haplo-
types in the population are assumed to cluster, with each 
locus having characteristic allele frequencies within each 
cluster. Th e observed haplotypes are assumed to arise as 
a mosaic of segments originating from diff erent clusters. 
Alleles at adjacent loci usually originate from the same 
cluster, but there is a transition probability of shift ing ori-
gin from one cluster to another between each locus. Th e 
likelihood of the model is maximized for the cluster prob-
ability, allele frequency, and transition probability param-
eters to obtain maximum likelihood parameter estimates. 
If a marker data point is missing, the probability of it 
being one allele or the other is calculated as a function 
of the cluster of origin probabilities of the haplotype at 
that marker and the allele frequencies for the marker in 
each cluster. Th e most likely allele is the one imputed. If 
the lines in the dataset are known to come from diff erent 

subpopulations, diff erent cluster probabilities and transi-
tion probabilities can be estimated for each subpopulation 
(Scheet and Stephens, 2006).

To perform an analysis, 2% of the marker data was 
masked (the score was marked as missing). Th e program 
fastPHASE was then used to impute missing data, with 
options to indicate that all haplotype phases were known 
(since the data were from inbred lines), and that subpop-
ulation labels were used. We also attempted imputation 
allowing for a single pseudo-recombination parameter, 
but this gave poor accuracies (data not shown). Haplo-
type cluster numbers of 10, 20, 30, and 40 were tested. 
Th e fastPHASE imputed marker score was compared 
to the known score of the masked data point and each 
marker was characterized according to the frequency 
with which its missing scores were correctly imputed. 
Th is operation was done 200 times for each of the seven 
barley chromosomes. We fi rst compared the program 
Structure (Pritchard et al. 2000) to K-means cluster-
ing (Hartigan and Wong, 1979) to assign lines to sub-
populations, assuming K = 4 subpopulations. Structure 
(Pritchard et al., 2000) was run using the no admixture 
model. Imputation accuracies when lines were assigned 

Table 1. Names of lines in the barley CAP core, the row subpopulation they were assigned to according to their 
spike phenotype (two or six row), and the subpopulation label given to them for the imputation of missing marker 
scores (see Materials and Methods). Lines that were not assigned a row subpopulation were not used in analyses 
involving these subpopulations.

No. Line
Row 

subpop.
Label No. Line

Row 
subpop.

Label

1 2B96-5038 two 1 50 FEG66-08 six 3

2 2B98-5312 two 2 51 FEG90-31 six 3

3 6B00-1526 six 3 52 Flagship two 2

4 6B02-3394 six 3 53 Foster six 3

5 6B94-7378 six 3 54 Franklin two 2

6 6B94-8253 six 3 55 Garnett two 1

7 6B97-2245 six 3 56 Geraldine -- 4

8 88Ab536 six 3 57 Harrington two 1

9 88Ab536-B six 3 58 Haruna Nijo two 2

10 AC Metcalfe two 1 59 Haxby two 1

11 Arapiles two 2 60 Hays -- 4

12 B1202 two 2 61 Hockett two 1

13 B1215 two 2 62 Hoody -- 6

14 B1602 six 3 63 Klages two 1

15 B1614 six 3 64 Kold -- 6

16 Baronesse -- 4 65 Kompolti -- 6

17 BCD12 two 1 66 Lacey six 3

18 BCD47 two 1 67 Larker six 3

19 Belford -- 5 68 Legacy six 3

20 Bison 1H -- 4 69 M122 six 3

21 Bison 1H+4H -- 4 70 M123 six 3

22 Bison 1H+4H+5H -- 4 71 Merit two 1

23 Bison 1H+5H -- 4 72 MNBrite six 3

24 Bison 4H -- 4 73 Morex six 3

25 Bison 4H+5H -- 4 74 ND20448 six 3

No. Line
Row 

subpop.
Label No. Line

Row 
subpop.

Label

26 Bison 5H -- 4 75 ND20508 six 3

27 Bison 7H -- 4 76 ND21863 two 1

28 Bowman two 1 77 NDB112 six 3

29 C-14 two 2 78 Newdale two 1

30 Canela -- 2 79 Nomini -- 6

31 CDC Copeland two 1 80 Orca two 1

32 CDC Kendall two 1 81 Pasadena two 2

33 CDC Sisler six 3 82 Price -- 6

34 CDC Stratus two 1 83 Radiant -- 4

35 Charles two 1 84
Rawson

(ND19119-2)
two 1

36 CIho 4196 two 2 85 Robust six 3

37 Collins two 2 86 Scarlett two 2

38 Conlon two 1 87 Shenmai 3 -- 2

39 Conrad two 2 88 Stander six 3

40 Craft two 1 89 Stellar six 3

41 Crest two 2 90 Strider -- 6

42 Dicktoo -- 6 91 Sublette two 1

43 Doyce -- 6 92 Sussex -- 6

44 Drummond six 3 93 Thoroughbred -- 6

45 Eslick -- 4 94 TR306 two 1

46 Excel six 3 95 Tradition six 3

47 Farmington two 2 96 WA1614-95 -- 6

48 FEG55-14 six 3 97 Washford -- 5

49 FEG59-09 six 3 98 Wysor -- 6
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to subpopulations by Structure versus K-means cluster-
ing were virtually identical, diff ering on average across 
haplotype cluster numbers by only 0.02%. Because line 
assignment was more stable by K-means clustering, we 
proceeded with it. Subpopulation numbers of 1, 2, 4, 
6, and 8 were tested in factorial with haplotype cluster 
numbers of 10, 20, 30, and 40.

Comparison of fastPHASE 
with Designed Tag SNP Tests
Th e raw marker data used here are unlike what might be 
encountered in an actual breeding program in the sense 
that the germplasm is of more than one type and of some-
what diverse geographical origins. To generate datasets of 
the size and type that a breeder might actually work with, 
we simulated one generation of random mating within the 
largest two-row and six-row subsets of the base population 
that were identifi ed using K-means clustering assuming 
four subpopulations (Table 1, Fig. 2). Progeny were simu-
lated by randomly pairing base population genotypes into 
an F

1
 and generating a gamete following Mendelian segre-

gation and rules of recombination assuming independent 
crossovers. Th e gametes represented possible genotypes of 
the progeny generation. Five simulations were performed 
on each subset. Th e analyses distinguished between a 
reference panel and an experimental panel (Fig. 1B). Th e 
assumption is that, in the real world, all marker data are 
available on the reference panel, but the experimental 
panel will only be typed for the tag SNP. In our case, 
through simulation, we also had scores for non-tag SNP 
available on the experimental panel (Fig. 1A). Reference 
panel sizes of 100 and 200 inbreds were simulated. Experi-
mental panels were always of 200 inbreds.

Working one chromosome at a time, reference panel 
marker data were submitted to Haploview (Barrett et 
al., 2005) for tag SNP selection. Haploview provides two 
tag SNP identifi cation methods. In the greedy method 
(Barrett et al., 2005), a marker is ranked according to the 
number of other markers with which it is in LD at an r2 
above a minimal specifi ed value that we called the tag 
selection r2. Th e highest ranked marker is picked as a tag. 
Th e remaining markers are then re-ranked according 
to the number of non-tag markers they predict and the 
best is added to the tag set. Th is process is iterated until 
all SNP not included in the tag set (non-tag SNP) have 
an r2 of at least a specifi ed level with a tag SNP. Aggres-
sive tagging can be accomplished, allowing non-tag SNP 
also to be predicted by a combination of two or three tag 
SNP. We employed this aggressive up-to-three SNP tag-
ging and specifi ed a minimal r2 level of 0.4. In the bestN 
method (Barrett et al., 2005), a maximum number of tag 
SNP is specifi ed, as well as a minimal r2. Tag SNP are 
ranked and picked in the same way, but only up to the 
maximum number of tags allowed (that is, not all non-
tag SNP will be predicted at a minimal level). For the 
bestN method, we chose the maximum number of tags as 
the number of tag SNP identifi ed by the greedy method, 
but used a minimal r2 of 0.8.

In picking the tags, Haploview also designs proxy 
tests that predict the score of each non-tag SNP based on 
the allelic states of single tag SNP or specifi c combina-
tions of two or three tag SNP (Barrett et al., 2005). To 
determine the accuracy of Haploview predictions, the r2 
between the proxy test prediction and the true marker 
score for non-tag SNP was calculated on the experimen-
tal panel that had not been part of tag identifi cation. 
Note that this r2, which we call the non-tag prediction r2, 
is diff erent from the tag selection r2 previously described. 
Th e tag selection r2 is calculated in the reference dataset 
while the non-tag prediction r2 is calculated in the exper-
imental dataset. Th e non-tag prediction r2 can only be 
calculated because of the simulation setup that we used. 
To determine the accuracy of fastPHASE imputations, 
a dataset concatenating the reference and experimental 
panels was analyzed. For each non-tag SNP, the predic-
tion r2 was calculated between fastPHASE imputations 
and masked scores in the experimental panel.

Finally, we sought to combine information from 
Haploview proxy test predictions with fastPHASE pre-
dictions as follows. First, the probability that the marker 
score b was 1 was calculated conditional on the proxy 
test prediction a using

( ) 1
1 0

1
b

b t a b
a

P
P b a P r P P

P

−
= = = −

−
and

( )1 1 (1 )(1 )b
b t a b

a

P
P b a P r P P

P
= = = + − −

where P
b
 is the frequency of the 1 allele at the non-tag 

SNP in the reference panel, P
a
 is the frequency of the 1 

allele prediction in the experimental panel, and r
t
 is the 

square root of the coeffi  cient of determination of the 

Figure 2. Lines of the barley CAP core plotted according to the 
fi rst two eigenvectors determined by principal component analy-
sis. The left and right ovals surround, respectively, the 2- and 
6-row subpopulations used as parents in simulating populations 
for evaluation of imputation accuracy.
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proxy test in the reference panel. Th ese equations were 
derived from

(1 ) (1 )
ab a b

e
a a b b

P P P
r

P P P P

−
=

− −
 and ( 1| 1) ab

a

P
P b a

P
= = =

or

(1 )

(1 ) (1 )
ab a b

e
a a b b

P P P
r

P P P P

− −
=−

− −
 and ( 1| 0)

1
ab

a

P
P b a

P
= = =

−

where r
e
 is the (unobserved) square root of the coeffi  cient 

of determination of the proxy test in the experimental 
population and we estimate r

e
 by r

t
; P

ab
 and abP  are, 

respectively, the joint probabilities of a = 1 and b = 1 
and a = 0 and b = 1. Second, the probability that marker 
score b was 1 on the basis of fastPHASE analysis was 
calculated from the frequency with which fastPHASE 
returned 1 over 100 calls. A weighted average of these 
two probabilities was calculated. Th e weight varied for 
each non-tag marker and depended on three indepen-
dent variables: the marker’s minor allele frequency, and 
the coeffi  cients of determination of the proxy test and 
of fastPHASE predictions in the reference panel. Th e 
probability that Haploview was correct was calculated 
as the number of times that was true divided by the total 
number of disagreements. Th is variable was regressed 
on the three independent variables. Th e weight given to 
the Haploview marker score imputation was taken as its 
regression-based predicted probability of being correct. 
If the weighted average was greater than 0.5, a 1 allele 
was imputed and otherwise a 0 allele was imputed.

Imputation of Missing Markers 
on the Basis of Random Tag SNP
Th e ability to select tag SNP is predicated on the fact 
that, initially, a reference panel is available that is scored 
at very high density. An optimal subset of the mark-
ers on that panel is then selected as tag SNP and these 
tags are scored on experimental data. Given the current 
development of SNP in barley, we are more likely to have 
a reverse situation: about 3000 markers that have not 
been specifi cally selected as tags will be scored on a large 
experimental population. Only subsequently might we 
be able to develop additional markers, score a reference 
panel at even higher density, and then seek to impute 
the new markers on the experimental population, using 
the 3000 currently existing SNP as a guide. Th is reverse 
situation is like having random SNP as tags. We there-
fore wanted to assess the accuracy of marker imputation 
when available data were not from carefully selected tag 
SNP but from random SNP. Still working one chromo-
some at a time, datasets for imputation by fastPHASE 
were created by concatenating to the reference panel the 
marker scores of randomly picked SNP in the experi-
mental panel. Th e prediction r2 between fastPHASE 
imputations and masked experimental panel SNP were 
then calculated. Th e number of SNP retained at random 
was 20% of the total number of polymorphic SNP. In a 
second approach, the SNP retained were not a random 

set and instead only every 20th SNP was dropped and left  
to be imputed. Th us, 95% of SNP were retained and those 
SNP dropped were well-surrounded by scored markers.

In order to improve imputation of new markers, we 
assumed it would be possible to score the experimental 
dataset with a smaller series of markers selected using 
the high-density panel. We compared two methods of 
selecting the extra “imputation support” markers. First, 
we used Haploview to pick extra tags. Again working 
one chromosome at a time, Haploview was used with 
an option forcing it to include the initial random SNP 
among the tag SNP, but to add either ten or twenty mark-
ers to the random set. Th us the random SNP would be 
supplemented by ten or twenty specifi cally selected tag 
SNP per chromosome, which, in barley, would amount 
to scoring an additional 70 or 140 markers on the experi-
mental dataset. Second, for each SNP in the high-density 
panel, we determined how diffi  cult it was to impute 
using fastPHASE by calculating the r2 between its true 
and imputed scores. Th e ten or twenty SNP per chro-
mosome that had the lowest r2 were then taken as the 
imputation support markers. Having selected imputation 
support markers, fastPHASE imputation datasets were 
created with the reference panel and experimental panel 
typed only with random plus support SNP. Again, the r2 
between fastPHASE imputations and the true scores of 
SNP missing from the dataset were then calculated.

Results
Missing Marker Imputation Accuracy
Th e imputation accuracy of fastPHASE was quite high. 
Th e highest correctness, averaged over all markers, was 
97.1% and occurred assuming a single subpopulation and 
thirty haplotype clusters (Fig. 3). Th e standard devia-
tion of correctness across markers in that case was 3.4%. 
Nearly 80% of markers were imputed correctly more 
than 95% of the time, and nearly 50% were imputed cor-
rectly more than 98% of the time (Fig. 4). Assuming at 
least 20 haplotype clusters were modeled, however, cor-
rectness never went below 96.7%, showing that it was not 
highly sensitive to subpopulation and cluster number. 
We hypothesize that assuming more than one subpopu-
lation only becomes useful if each subpopulation will 
have a suffi  cient number of individuals in it. Since we 
only had 98 individuals to start with in the barley CAP 
core, that threshold was not reached.

Tag Selection and Imputation Using Tag SNP
Diff erences between the two subpopulations (two- and 
six-row) caused tag SNP selection to diff er between them 
(Table 2). Th e two-row subpopulation was more poly-
morphic than the six-row. On average over simulations 
there were 2495 and 1595 markers with minor allele fre-
quency > 0.05 for the two- and six-row subpopulations, 
respectively. Linkage disequilibrium was also less in the 
two- than the six-row subpopulation: a higher percentage 
of markers chosen as tags was required to predict non-tag 
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markers at the minimum tag selection r2 within the two- 
than the six-row subpopulation (Table 2). Th e diff erence 
between the subpopulations in the percentage markers 
needed as tags increased as the minimum tag selection r2 
increased from 0.4 to 0.8. As a result of these two facts, the 
number of tag SNP needed for the two-row subpopula-
tion was more than double that needed for the six-row 
subpopulation. For example, for the tag selection r2 of 0.4, 
610 and 273 markers, on average, were needed for the two- 
and six-row subpopulations. Once tag SNPs were selected, 
however, the two subpopulations behaved quite similarly: 
non-tag markers were predicted with similar r2 (Table 
3). Th ere were, however, very large diff erences between 
the methods in their ability to predict scores for non-tag 
markers (Fig. 5A; Table 3). In particular, imputations from 
fastPHASE matched the true values of marker scores 
with much higher r2 than did the proxy test predictions 
designed by Haploview. Th e minimal prediction r2 were 
similar for all methods, with more than 95% of all mark-
ers being predicted at an r2 better than 0.3 (Fig. 5A). From 
there, however, the methods diverged with fastPHASE 
predicting much higher percentages of markers at high r2 
than the Haploview-designed proxy tests (Fig. 5A, Table 3). 
In fact, in general, fastPHASE did a better job of predict-
ing non-tag markers even when it used only randomly-
selected tag SNP, than Haploview did with its carefully 
chosen tags. Besides this major diff erentiation between the 
methods, there was also an interaction between method 
and subpopulation: Haploview tended to do a better job of 
prediction in the six-row than the two-row subpopulation 
while the reverse was true for fastPHASE (Table 3). Th is 
interaction was, however, swamped by the overall superi-
ority of fastPHASE imputations.

Over all marker scores where the Haploview proxy 
test and fastPHASE disagreed, the proxy test was cor-
rect only 7% of the time in both two- and six-row 

subpopulations. Th ree variables were signifi cantly cor-
related to the probability that the proxy test was cor-
rect: the marker’s minor allele frequency (MAF) and 
the coeffi  cients of determination of the proxy test and of 
fastPHASE predictions in the reference panel. Multiple 
regression showed that in case of disagreement, decreas-
ing MAF and increasing proxy test coeffi  cient of deter-
mination increased the probability that Haploview was 
correct, while increasing fastPHASE coeffi  cient of deter-
mination decreased that probability. For the two- and 
six-row subpopulations however, only 14 and 8%, respec-
tively, of the variation in that probability was explained 
by these variables (Fig. 6). Th e regression-predicted prob-
ability of Haploview correctness never exceeded 50% 
(Fig. 6). Consequently, our attempts to use Haploview 
predictions to increase correctness of fastPHASE impu-
tations in cases where the two disagreed were unsuccess-
ful: the raw fastPHASE prediction was always better than 
a prediction from the combination of Haploview and 
fastPHASE predictions (data not shown).

Tag Selection Methods Appropriate 
for fastPHASE Imputation
Th e previous results show that tag SNP selected using 
Haploview’s greedy algorithm provide an excellent 
basis for fastPHASE’s imputation algorithm. Looking 
at the power of QTL detection, de Bakker et al. (2005) 
found that their bestN algorithm provided higher power 
than the greedy algorithm. We tested whether either 
algorithm provided tags leading to higher imputation 
accuracy (Fig. 5B). Th ere were no important interac-
tions between the tag selection algorithm and the 

Figure 3. Fraction of masked marker scores correctly imputed 
by fastPHASE as a function of the number of subpopulations 
assumed in the barley CAP core and the number of haplotype 
clusters modeled in the analysis. Note the very small range of 
less than 1% between the best and worst correct fractions.

Figure 4. Probability density function of the distribution across 
markers of imputation correctness when marker scores missing 
at random were imputed by fastPHASE. Each point in the distri-
bution represents for a marker the frequency that the marker’s 
scores were correctly imputed.
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subpopulation or the reference panel size, so we present 
means across all analyses (Fig. 5B). First, to determine 
the upper limit of imputation accuracy at the available 
marker density, we used fastPHASE to impute markers 
when very few markers (one out of 20) were masked in 
the dataset. In that case, 93% of markers are predicted 
at an r2 of 0.8 or greater (Fig. 5B). Th e greedy algorithm 
did better than the bestN algorithm at ensuring that all 
non-tag markers were imputed above a minimal r2. For 
example, when using the greedy algorithm, over 96% of 
markers were imputed at a prediction r2 of 0.6 or better, 
whereas this percentage was just over 91% for the bestN 
algorithm (Fig. 5B). In contrast, the bestN algorithm 

predicted more markers than the greedy algorithm 
at a very high r2 level: 68 versus 60% of markers were 
predicted at an r2 of 0.9 or higher using the bestN and 
greedy algorithms, respectively.

Optimally Supplementing Random Tags
If researchers do not have the luxury of careful selec-
tion of tag SNP at the outset, it may still be possible to 
supplement marker scores on a previously genotyped 
experimental dataset with a small number of additional 
markers to improve imputation of many more markers 
from a newly-established reference panel. Adding only 
ten markers per chromosome was eff ective at improving 
the ability of fastPHASE to impute remaining markers. 
Adding ten extra markers that were tough to impute 
or that were selected by Haploview’s bestN method 
increased the percentage of markers predicted at an r2 of 
0.8 or better by 8 and 12%, respectively (Fig. 5C). When 
adding twenty extra markers the increases for the two 
methods were of 15 and 19%, respectively. Particularly 
for maximizing the number of markers imputed at high 
r2 levels, the Haploview-selected markers were more 
eff ective tags than markers that fastPHASE imputed 
poorly (Fig. 5C).

Discussion
Th e result that missing scores for about half of the mark-
ers in our dataset were imputed correctly 98% of the time 
or better indicates that imputation using local cluster-
ing as implemented in fastPHASE (Scheet and Stephens, 
2006) can be a useful tool for dealing with missing 
marker data. We believe that these imputation accuracies 
are conservative. First, the barley CAP core does not rep-
resent a “population” in the way that lines from an actual 
breeding program would. Th e CAP core therefore does 
not meet fastPHASE assumptions as well. For example, 
marker scores on winter barley lines in the core were 
imputed correctly only 93.1% of the time as compared 
to 97.6% of the time for spring lines. Th is diff erence was 
presumably simply caused by the fact that there are fewer 
winter lines in the core. Lines from a single program 
would not have this level of heterogeneity. Guan and Ste-
phens (2008) also found that poorly-matched reference 
and experimental panels decrease imputation accuracy. 
Second, fastPHASE assumes that the correct marker 
order is known, whereas in our case marker order was 
approximate. Finally, the CAP core dataset used here rep-
resents only 98 lines, a relatively small reference panel.

Th e fastPHASE algorithm was clearly better at pre-
dicting non-tag marker scores than was the proxy test 
designed by Haploview (Fig. 5A). Th e resulting recom-
mendation for tagging methods appears ironic: use Hap-
loview to select tag SNP on the reference panel, but then 
disregard its own tests for applying tag SNP information 
and instead rely on fastPHASE to predict non-tag marker 
scores in an experimental panel. FastPHASE imputa-
tions had a further advantage over Haploview proxy 
tests in that the latter could not provide a prediction for 

Table 2. ANOVA and mean percentages of markers 
selected as tags using Haploview’s greedy method for 
two- and six-row subpopulations, reference panel sizes 
of 100 or 200 inbreds, and minimum tag selection r 2 of 
0.4, 0.6, and 0.8.

Percentage markers used as tags

Source df Mean Square

Subpopulation (S) 1 0.202 ***

Ref. Panel Size (P) 1 0.002 ***

Min. Tag. Sel. r2 (R) 2 0.210 ***

S x P 1 0.000

S x R 2 0.002 ***

P x R 2 0.000

S x P x R 2 0.000

Means by subpopulation and minimum tag selection r2 [%]

r2 = 0.4 r2 = 0.6 r2 = 0.8

Two-row 24.5 34.6 45.9

Six-row 17.1 23.6 32.7

***Signifi cant at the 0.001 probability level.

Table 3. ANOVA and mean percentages of markers 
imputed with a prediction r 2 greater than 0.5 and 
0.8. Analyses were fastPHASE imputations on tag SNP 
(fP/tag) or on randomly selected SNP (fP/rand), and 
Haploview proxy test predictions on tag SNP (HV/tag).

Percentage markers with 

Prediction r 2 ≥ 0.5 Prediction r 2 ≥ 0.8

Source df Mean square Mean square

Subpopulation (S) 1 0.001 0.038 *

Ref. Panel Size (P) 1 0.085 *** 0.114 ***

Analysis (A) 2 5.104 *** 7.701 ***

S x P 1 0.007 0.000

S x A 2 0.238 *** 0.172 ***

P x A 2 0.004 0.035 **

S x P x A 2 0.017 0.008

Means by subpopulation and analysis [%]

fP/tag fP/rand HV/tag fP/tag fP/rand HV/tag

Two-row 98.5 90.3 71.7 81.1 65.9 31.2

Six-row 97.8 85.6 79.3 77.9 66.0 40.4

***Signifi cant at the 0.001 probability level.
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lines where the relevant tag marker scores were missing, 
whereas the former always gave an imputation. More-
over, the prediction r2 of imputation were very good, 
even when as few as 20% of markers were selected as tags 
(Table 3). Th ese high r2 suggest that, at least for 6-row 
spring barley in North America, it should be possible to 
design a panel of between 300 and 600 SNP that, when 
coupled to imputation on the basis of an appropriate 

reference panel, should be able to capture a very large 
fraction of known genomic variation. Further improve-
ment in imputation accuracy over what we observed 
might be obtained by a two-step process in which haplo-
type cluster analysis is performed only on the reference 
panel, and clustering results are subsequently applied to 
experimental panels (Guan and Stephens, 2008). While 
the CAP core might serve as a reference panel, it was 

Figure 5. A. Fraction of non-tag markers predicted better than or equal to a range of prediction r2. Prediction r2 calculated for: Solid 
line – fastPHASE imputing markers based on Haploview-selected tag SNP; Dashed line – fastPHASE imputing markers based on ran-
domly-selected tag SNP; Dotted line – Haploview-determined proxy tests. B. Fraction of non-tag markers predicted better than or equal 
to a range of prediction r2. Prediction r2 calculated for: Solid line – 95% of markers retained as tags ; Dotted line – greedy algorithm 
(de Bakker et al., 2005) used with tag selection r2 set to 0.4; Dashed line – bestN algorithm (de Bakker et al., 2005) used with tag 
selection r2 set to 0.8. C. Fraction of non-tag markers predicted better than or equal to a range of prediction r2. Prediction r2 calculated 
for: Solid line, no symbols – 20% of markers randomly selected as tags; Circles – ten supplemental markers per chromosome; Crosses – 
twenty supplemental markers per chromosome; Solid lines with symbols – supplemental markers chosen because fastPHASE predicted 
them poorly; Dotted lines with symbols – supplemental markers chosen by bestN algorithm (de Bakker et al., 2005) with tag selection 
r2 set to 0.8. Corresponding solid and dotted vertical arrows indicate the increase in the fraction of markers predicted better than or 
equal to a prediction r2 of 0.8 when ten markers were added per chromosome. D. Fraction of non-tag markers predicted better than or 
equal to a range of prediction r2. Prediction r2 calculated for all OPA markers when DArT in the dataset were used as tag markers.



20 THE PLANT GENOME ■ MARCH 2009 ■ VOL. 2, NO. 1

not specifi cally designed for this purpose and further 
research should explore the optimal design of a panel for 
this function. An important distinction has been made, 
however, between coverage of known variation versus 
coverage of complete variation (Bhangale et al. 2008). In 
the case presented here, all SNP and DArT scores rep-
resent known variation, which appears to be very well 
imputed, whereas a large resequencing project would be 
necessary to assess coverage of complete, but currently 
unknown, variation.

Th e fastPHASE algorithm was optimally eff ective 
when the experimental dataset was scored with carefully-
selected tag SNP, but it also performed reasonably well 
when only data on randomly-selected markers was avail-
able (Fig. 5A). Th is observation implies that imputation 
might still be fruitfully applied to experimental datasets 
scored with un-selected markers, as long as the reference 
panel also carries those markers. To test this idea, we 
simulated experimental datasets scored only with DArT 
markers and asked how well SNP data could be imputed in 
such datasets on the basis of the CAP core reference panel. 
We found that over 80% of SNP could be imputed with a 
prediction r2 of 0.8 or greater (Fig. 5D). Th e relative success 
of imputation here argues that one could use the reference 
panel as a kind of Rosetta Stone allowing information 
from one marker system to be converted to that of another 
(Servin and Stephens, 2007). Th is process might allow for 
valuable meta-analyses across datasets that would seem 
otherwise incompatible.

At this time, we have no better proposal for the selec-
tion of tag SNP than the tagger algorithms implemented 
in Haploview (Barrett et al., 2005; de Bakker et al., 2005). 
Th ese tag selection methods were not developed with 
the fastPHASE algorithm in mind, and so they may be 
sub-optimal. In particular, the tagger algorithms operate 
primarily on the basis of pairwise marker relationships 
whereas fastPHASE defi nes clusters on the basis of multi-
locus information (Scheet and Stephens, 2006). At the 

same time, obviously, tag selection ensures that markers 
are scored that carry information about most or all mark-
ers that were not scored. Consequently, it makes sense that 
these methods should work reasonably well. Furthermore, 
it was striking how faithfully characteristics of pairwise 
tag selection methods were refl ected in the prediction 
curves produced by fastPHASE. In particular, the greedy 
algorithm that ensures that all markers are tagged above a 
minimal threshold generated imputations that were above 
a similar threshold for a very high fraction of markers 
(Fig. 5B). In contrast, the bestN algorithm that ensures 
that a maximal number of markers are tagged at a high 
level generated a higher number of accurately imputed 
markers (Fig. 5B). Nevertheless, given how valuable accu-
rate imputation can be, further research into optimal tag 
selection for use by fastPHASE might be fruitful.

Finally, relative to variation that will be discovered 
in the future, our current markers and tags represent, in 
the worst case scenario, randomly selected tags (Bhan-
gale et al. 2008). Consequently, aft er the discovery of new 
variation, we will want to supplement marker scores in 
experimental datasets with tags that will help impute 
this new variation (Fig. 5). Observations here provide 
optimism: when we supplemented random tags with 10 
markers per chromosome (70 markers in total or 2.8 and 
4.4% of the polymorphic markers in the two- and six-
row subpopulations, respectively), an additional 12% of 
markers were imputed at a prediction r2 above 0.8 (Fig. 
5C). Th us, judicious selection of tags should, in this situ-
ation also, provide high returns on the investment.

In the study reported here, we have not addressed 
how researchers might use imputed scores obtained by 
fastPHASE. We distinguish between cases that require 
high confi dence in the imputed allelic state versus cases 
where a continuous probability of allelic state would 
suffi  ce. Th e former case might occur in marker-assisted 
selection where the researcher wanted to know the spe-
cifi c allele at a marker and therefore which scores were 
accurately imputed (e.g., belong to the set for which 
imputations are correct more than, say, 98% of the time). 
One approach would be to perform a simulation study 
such as done here in which available marker scores 
are masked and imputed, giving some indication of 
the markers for which actual missing data will be well 
imputed. Another approach would be to run fastPHASE 
multiple times on the same data set and to only retain 
imputed values that were consistent across all runs. In 
the present case, we found that marker scores that were 
imputed consistently over ten or more fastPHASE runs 
were imputed correctly 98.7% of the time. Similarly, it 
would be possible to impute missing marker data with 
more than one of the several methods currently pro-
posed in the literature (Roberts et al. 2007; Sun and Kar-
dia, 2008). Higher accuracy was found when the same 
score was imputed by more than one method (Sun and 
Kardia, 2008). Because Haploview imputations are not 
model-based (they rely on simple linkage-disequilibrium 
measures between tag and non-tag markers), whereas 

Figure 6. When Haploview and fastPHASE disagreed in their 
marker score imputation, the fraction of correct Haploview impu-
tations was predicted by multiple regression (see Materials and 
Methods). Each point in the graph represents one marker. The 
line is the linear regression of observed on predicted Haploview 
correct fraction.
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fastPHASE imputations rely on a model assuming 
recombination processes, they might capture diff erent 
signals from the data. We therefore attempted to com-
bine the two to increase overall accuracy. We were unable 
to obtain a combination with higher accuracy than fast-
PHASE alone, however, primarily because when Haplo-
view disagreed with fastPHASE, it was correct only 7% 
of the time. Th is low percentage did not allow suffi  cient 
margin for improvement of fastPHASE.

For some fraction of the “incorrectly imputed” cases 
we observed here, our dataset may be at fault because it 
contains genotyping errors. Indeed, imputation methods 
have been proposed to identify incorrectly scored markers 
and to improve allele calling algorithms (Marchini et al., 
2007; Scheet and Stephens, 2008). In support of this idea, 
we found that consistently-imputed DArT markers were 
correct 97.4% of the time, while consistently-imputed 
SNP markers were correct 99.1% of the time. Th is diff er-
ence may refl ect lower error rates for SNP markers than 
for DArT markers, though other explanations are pos-
sible. For example, it may be that the map-merging pro-
cedure we used, combined with the fact that there were 
fewer DArT than SNP markers, increased the error of 
DArT marker placement, making DArT more diffi  cult to 
impute. Of the scores actually missing in our dataset, 78% 
of them were imputed consistently to the same score over 
200 fastPHASE runs. If we assume that those imputations 
were correct, we can reduce our percentage missing data 
rate from 1.8 to 0.4%, a valuable gain.

For many analyses, however, the algorithms do not 
require the exact allelic state but can be applied when 
imputation provides a probability that the allelic state is 
either 0 or 1. For example, singular value decomposition of 
the marker data matrix or regression of the phenotype on 
marker score can both use such continuous probabilities. 
Indeed, improved eff ect estimates may be obtained when 
the uncertainty in the data on the allelic state is taken into 
account by assigning a probability of allelic state rather 
than an all-or-nothing imputation (Dai et al. 2006; Kraft  
and Stram, 2007; Mensah et al., 2007; Guan and Stephens, 
2008). Such a probability assignment can be obtained from 
fastPHASE by calling it repeatedly and taking a simple 
average of the imputations obtained from each call, or by 
using the –Pm option in fastPHASE version 1.4 or later 
(P.A. Scheet, personal communication, 2009). Th e soft -
ware BIMBAM (Servin and Stephens, 2007; Guan and 
Stephens, 2008) can also output imputation probabilities 
directly. BIMBAM is designed for the analysis of human 
data and assumes heterozygous individuals, though it 
could presumably be fooled into working with inbreds 
(Y. Guan, personal communication, 2009). BIMBAM has 
not been tested yet for inbreds to our knowledge. Guan 
and Stephens (2008) have investigated association analysis 
using imputation and found that it can increase detection 
power relative to using only typed markers. Furthermore, 
imputation probabilities (that is, the posterior mean of a 0 
or 1 imputation) were found to work as well as doing a full 
analysis in which imputation and association analyses are 

repeated to obtain a distribution of association outcomes 
across uncertain imputations.

We have shown that a recently-developed marker 
score imputation method developed by human geneti-
cists in the context of association studies (Scheet and 
Stephens, 2006) can also work for a self-pollinating crop, 
despite the great diff erences in demographic histories 
between these diff erent types of species. Simulations 
using real barley genotypes suggested that imputation 
will work well to alleviate problems associated with miss-
ing marker data and to increase the informativeness of 
tag markers. In the latter case, we found that for six-row 
North American barley it may be possible to score as 
few as 300 SNP and nevertheless retain a high degree 
of information on the scores of other common poly-
morphisms. While we have no direct evidence on the 
accuracy of fastPHASE in crops other than barley, the 
fact that the algorithm works well in species as divergent 
as humans and barley suggests that it should also work 
well in other crops. For breeding programs, cost savings 
associated with reducing marker densities to this degree 
could allow for additional applications such as earlier-
generation marker screening and performance predic-
tion. On the strength of these results based on genotypes 
alone, imputation methods appear to be quite useful for 
association mapping and breeding. Further evaluation, 
including the analyses of phenotypic data, is warranted.
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